
1

Training a Minesweeper Solver
Luis Gardea, Griffin Koontz, Ryan Silva

CS 221, Autumn 2015

Abstract—Minesweeper, a puzzle game introduced in the
1960’s, requires spatial awareness and an ability to work with
incomplete information. Utilizing different machine learn-
ing and artificial intelligence approaches, we implemented
solvers that make use of linear and logistic regression,
reinforcement learning, as well as constraint satisfaction
problems. We were able to have various levels of success
with different board sizes using different models, finding
that the CSP model functions best, with the other models
being limited by the difficulty of enumerating every board
configuration for a given board size.

I. INTRODUCTION

To start a game of Minesweeper, the player is pre-
sented with a rectangular grid of tiles, behind which
are hidden a certain number of randomly distributed
mines (the standard board is 16x16 with 40 mines).
The player uncovers a tile by clicking it; if the
clicked square is not a mine, it reveals an integer (its
value), which is the number of adjacent uncovered
tiles (including those that only share a corner) that
contain a mine. Using this limited information, the
player’s goal is to uncover all of the tiles that do
not have mines, but the player loses the game at any
point if an uncovered square contains a mine. Using
the techniques discussed in this class, we aimed to
implement programs that can play Minesweeper.

Given a particular board state, such a solver must
be able to decide which tile to uncover next, knowing
only the information given by currently uncovered
squares. Sometimes this information is sufficient to
determine with 100% certainty that a mine will be in
a given location; in other cases, one can only know the
probability distribution of a mine’s location. Thus, a
solver must be able to find guaranteed “safe” tiles that
cannot possibly contain mines, and when no such tiles
exist, it must select the tile with the lowest probability
of containing a mine. Notably, an early algorithm for
this problem has already been written: by enumerating
all possible mine configurations that satisfy the uncov-
ered tiles’ values, one can determine the probability
that a mine is in any particular tile. However, the
time complexity of this approach quickly makes the
algorithm infeasible. Determining whether a given
mine configuration satisfies the board constraints was

proven to be NP-complete in 2000 [1]; because the
previously mentioned algorithm involves enumerating
all possible solutions to this NP-complete problem, it
belongs to a more difficult class of problems called
#P-complete [5]. Thus much of the difficulty in de-
signing a Minesweeper solver lies in approximating
the probability that a mine will be underneath any
specific tile. The problem is further complicated by
the fact that the tile with the lowest probability of
containing a mine is not always the optimal move.

II. LITERATURE REVIEW

Several approaches have been made to solve games
using machine learning. Mnih et. al. implemented a
deep reinforcement learning technique used to learn
strategy for playing Atari games [4]. A modified Q-
learning algorithm was enhanced by function approx-
imation with a convolutional neural network, which
was able to effectively generalize learning of the state
space. As for specific methods applied to solving the
game of Minesweeper, several attempts were made
in the 90’s, where Adamatzky constructed a cellular
automaton that populated an n × n board in Ω(n),
with each cell having 25 neighbors and 27 states
[2]. Various other models have been made, ranging
from use of genetic algorithms, graphical models and
other learning strategies [3]. There have been previous
implementations to the CSP approach, which is the
current “state of the art” method [3][8]. Nakov and
Wei [5] derive bounds on the complexity of playing
Minesweeper optimally. The authors formulate the
Minesweeper game as a POMDP and use enumeration
to convert the game to an MDP, while also reducing
the state space. They then use value iteration methods
to solve the MDP for a 4x4 board, but the method is
not scalable.

III. METHODS/APPROACHES

A note is to be made for the general approach with
which the first move is made. Although initially, any
random square will have the same probability of being
a clear, given mine density d,

p(xij = clear) = 1− d



2

however, in order to win the game, it is helpful to
obtain a zero, as this will clear out a particular square
and also all of the squares adjacent to it. We then
have the following probabilities for different squares
of being clear

p(xij = 0|ij = corner) = (1− d)4

p(xij = 0|ij = edge) = (1− d)6

p(xij = 0|ij = inside) = (1− d)9

Because of this, if we select a corner square, we know
that we will clear out a larger area of the board,
gaining more information on the board and increasing
the probability of winning.

Another note to be made is the fact that testing is
being done with the standard real rules. This means
that the player cannot lose on the first move, thus if
the first move is actually a mine, the game is implicitly
restarted and not counted as a game so that the move
that the player selected is not a mine.

The image above is the GUI written for the CSP
implementation. The purple squares with “x’s” are
the mines that were safely marked as mines. All
other squares are the uncovered squares with their
value shown.

A. Baseline and Oracle

In order to determine the difficulty of this problem,
it is important to calculate the gap between the ef-
ficacies of a baseline and an oracle. For a baseline,
we initially considered writing a program that plays
by random moves. However, the probability of such

a program winning rapidly approaches zero for even
for small boards, and does not give us an accurate
estimate for a baseline. Instead, we chose an average
beginning player, who wins at a rate of 35% on an
8x8 board [5]. The selection of an oracle was more
difficult. One possibility is to use an algorithm that
cheats by looking up the location of mines, but this
would achieve a success rate of 100% and again
would not give a very accurate estimate of the upper
bound. Truer oracles are difficult to implement though.
The theoretical upper bound is a minesweeper agent
that always behaves optimally, picking the guaranteed
mines when possible, and selecting the probabilisti-
cally optimal choice when no tile is guaranteed to be
safe. However, implementing such a program is the
goal of this paper. Thus, we chose an oracle that can
look up the location of mines a fixed ratio of the time,
and other times must make a random guess.

B. Supervised Learning

Data for our supervised learning approaches is
generated in the following manner. Each square can
be represented as a feature with an integer determined
by the squares state in the current board. If a square
is uncovered, the corresponding feature is represented
by the number of mines to which the square is
adjacent. If the square is covered, it is represented by a
COVERED value, and if the square is out of bounds, it
is represented with an OUT OF BOUNDS value. We
generate data by simulating games of Minesweeper,
and play each game until it is won by always choosing
a correct move. At each state, the perimeter consists
of all squares that are covered, but are adjacent to
uncovered squares. Moves are chosen randomly from
squares within the perimeter with some fixed proba-
bility, and otherwise from all uncovered squares. This
method models normal game play where most moves
are selected from the perimeter of the current board.
In our work, the machine learning algorithms do not
flag squares indicating a mine is present; they only
predict whether a square is suitable to be a next move.
We play a version of Minesweeper that automatically
uncovers neighbors of squares that are not adjacent to
any mines. The general greedy algorithm for playing
Minesweeper with a predictor is presented in Algo-
rithm 1. Two approaches using supervised learning to
solve Minesweeper are presented.

1) Local Classification: This method uses the local
board configuration to classify an uncovered square
in a Minesweeper game. The classifier uses a feature
extractor to obtain input from the local board space.



3

Algorithm 1 playingMinesweeper
1: while not game over do
2: Use trained model to predict all squares in the

perimeter
3: if No reasonable moves in the perimeter then
4: Choose random move outside perimeter
5: else
6: Probe square with lowest chance of being

a mine
7: end if
8: end while

This feature extractor was chosen because nearby
squares contain the most relevant information about
the uncovered square that is currently being classified.
Note that feature vectors in this dataset can potentially
be correctly labeled in both classes, since the same
board state can have multiple mine configurations.
This means that the dataset is not separable, and to
solve this non-separability, we label squares positively
only when there is certainty that the square does not
contain a mine (i.e there are no mines in a given
square for all possible mine configurations).

Gathering data in this way tends to skew the data
towards the negative class (the class predicting a mine
is present). Sixty-six percent of our data is labeled
negatively; this has an adverse effect because predic-
tors trained on this data will favor making a prediction
that a mine is present, and tend to misclassify safe
squares. To counteract this, during training we give
the positive class higher weight so that the classifier
makes more accurate predictions about safe moves.

We train a logistic regression as well as an SVM
classifier for predicting uncovered squares [7]. The
new optimization problem for the SVM with weights
βi is

min
w

Φ(w) =
1

2
w>w + C

m∑
i=1

βiξi

subject to

yi(w
>φ(xi) + b) ≥ 1− ξi, i = 1, . . . ,m

ξi ≥ 0, i = 1, . . . ,m

Then, our dual becomes

W (α) =
m∑
i=1

αi −
1

2

m∑
i,j=1

αiαjyiyjK(xi, xj)

subject to
m∑
i=1

yiαi = 0

0 ≤ αi ≤ Cβi i = 1, . . . ,m

and KKT conditions become

αi[yi(w
>φ(xi) + b)− 1 + ξi] = 0, i = 1, . . . ,m

(Cβi − αi)ξi = 0, i = 1, . . . ,m

2) Global Probability Regression: This method
uses all squares as features, and regression is done
on the output of a full Minesweeper solver, which
calculates exact probabilities for every square in ex-
ponential time. Both the training data as well as
labels are high dimensional vectors in this regres-
sion problem, and the label is a real valued vector.
The dimensionality of the dataset cannot be reduced
without losing accuracy because of symmetries in the
game and the fact that every square contains essential
information for predicting probabilities.

For this problem, we use a multiple kernel ridge
regression [6], with cross validation for setting the
meta-parameters for this problem. Kernelizing the
regular form of multiple kernel ridge can be done as
follows.

The closed form of the parameters of the multiple
ridge regression problem is given by

θ∗ = ((X>X + λIn)−1X>)Y

where Y is a matrix of training labels. Using the
identity

(B>R−1B + P−1)B>P−1 = PB>(BPB> +R)−1

we can reformulate θ∗ as

θ∗ = X>(XX> + λIm)−1Y.

To make a prediction with kernelization, we can use

θ∗>x = Y >(XX> + λIm)−1Xx

= Y >(K + λIm)−1k

where

Kij = 〈xi, xj〉

and k is a vector of inner products between the data
and new x:

k = (K(x1, x), . . . , K(xm, x))>



4

C. Simplified Q-Learning
One approach involved modeling minesweeper as

an MDP and using a modified version of Q-learning
to discover the best actions for each given board
configuration. After learning the Q values, the al-
gorithm would then use the values obtained to play
minesweeper. The standard Q-learning algorithm takes
the following form:

Q̂opt(s, a)← (1− η)Q̂opt(s, a) + η(r + γV̂opt(s
′))

This structure allows the algorithm to learn not just
about the direct reward of a particular action, but
whether a particular action is more likely to lead to
reward in the long-term. While this is crucial for many
games like chess, we are not as concerned with the
endgame result in minesweeper. Instead we are more
interested in the immediate reward: whether a par-
ticular move will uncover a mine on a specific board
configuration. In order to approximate this reward, we
remove the γV̂opt(s′) term, leaving

Q̂opt(s, a)← (1− η)Q̂opt(s, a) + η(r)

By letting the reward for choosing a non-mine be
some positive number (say, 1) and that of choosing
a mine be some negative number (-1), we are able to
estimate which tile is least likely to have a mine in a
given board configuration by finding the tile with the
highest Q value. With this in mind, the initial imple-
mentation is shown below. While this approach had

Algorithm 2 initial Q-Learning
1: Begin by probing a corner square
2: while not game over do
3: s← current state of the board
4: Uncover square at random location (a, b)
5: if square is mine then
6: r ← −1
7: else
8: r ← 1
9: end if

10: Q̂opt(s, a)← (1− η)Q̂opt(s, a) + η(r)
11: end while

moderate success, it was very slow at exploring the
state space. This led us to wonder if we could gather
information on possible actions more quickly. We
devised a further modification that at each state would
update information about all correct moves, but would
only choose one to proceed. The algorithm is shown in
the following column. This training algorithm makes
a few changes. One change is that the algorithm

Algorithm 3 improved Q-Learning
1: Begin by probing a corner square
2: while not game over do
3: s← current state of the board
4: Array ← all tiles on frontier not mines
5: for tile in Array do
6: P̂ (s, a)← P̂ (s, a) + 1
7: end for
8: probe random square in Array
9: end while

only considers correct moves. In addition, we have
introduced the notation P̂ (s, a) because we no longer
store the Q value for a given (state, action) pair; in fact
P̂ (s, a) more closely resembles the probability that a
given tile does not contain a mine. Removing the η
terms is only acceptable because we do not compare
P values between different states; we only compare
different actions within the same state. Suppose our
learning algorithm has visited a state S n times. Tiles
with a P value close to n have very rarely contained
mines, and tiles with a P value closer to zero have
frequently contained mines. Thus, tiles with higher P
values in a given board state are less likely to contain
mines than tiles with lower P values in the same state.
This assumes that S is large, however, in order to
acquire a proper probability distribution. After storing
P values for these (state, action) pairs, we must use
them to play minesweeper and determine our win rate.
For each move, the playing algorithm plays the tile
from the frontier with the highest P value. However,
the only exception is if all tiles from the frontier have
a P value of zero, and if the training algorithm had
seen this state at least once: the implication being that
there may not be any correct moves on the frontier.
In this case, the playing algorithm selects a random
tile that is not on the frontier and continues.

D. Constraint Satisfaction Problem (CSP)

When posing the problem of solving a Minesweeper
game as a CSP [8], all board positions are thought of
as boolean variables, having a value of either 0 or
1 to represent the presence of a mine. When a tile is
probed, either a mine is found, in which case the game
is lost, or its value is shown. Knowing the value of a
tile allows for a constraint to be set on the variables
that surround it; this is done by stating that the sum of
these variables must equal the value of the tile. Thus,



5

our constraint is

xij =
∑
k,l

xkl

where xij is now a known constant and where k ∈
{i + 1, i, i − 1}, l ∈ {j + 1, j, j − 1} and are within
the bounds of the rows and columns of the board.
When new values are discovered, the constraint is
simplified by subtracting from both sides. Variables
can be simplified further when they share variables in
common; given the constraints x1 + x2 + x3 + x4 = 2
and x1 + x2 = 1, it can be deduced that x3 + x4 = 1
and the larger constraint can be discarded. Constraints
can be easily solved if they are trivial, ie. xij = 1, or
if the constant is equal to the number of variables
or 0, in which case all variables are mines or all are
clear, respectively. This is an implementation of the
Equation Strategy [8].

After all simplifications are done, if no safe move
exists, we divide existing constraints into sets of
constraints that have common variables and run a
backtracking algorithm that finds all possible solu-
tions. Each solution is grouped by the number of
mines it requires and for each variable, a tally is kept
of how many solutions require it to be a mine. The
number of mines remaining and the number of mines
a solution requires are used to throw out infeasible
solutions. If after all solutions are computed, a square
is found to be a 0 or 1 in all of the solutions, that
square can be probed or marked a mine, as its value
is then certain.

There are cases, specifically when all of the solu-
tions to a coupled set of constraints require the same
number of mines and none of the variables in the set
of constraints have neighbors that are part of another
constrained set or unknown. In these cases, there is
at most a 50 percent chance of guessing correctly
and no new information will help in determine with
certainty. Because of this, the algorithm makes the
guess sooner rather than later, since it may still guess
incorrectly in the future, so in order to save time, it
should guess now. No information is learned from
these “crap shoots”, even in the case that the guess
was correct. After this, another guess must be made to
decide on where to probe. The best guess is calculated
by summing up the number of solutions where a
variable has a value of zero and dividing it by the
number of solutions for that variable. There is also an
estimate made on the probability of there not being
a mine on the unexplored and unconstrained areas of
the board. If the probability of there not being a mine
is greater in the unexplored area, then we pick, in

order of precedence, first, if there are unconstrained
corner squares, we probe one, if not, then we attempt
to probe unconstrained edge squares, if there are none,
then we finally attempt to probe a random square that
is unconstrained; this goes in accordance to what was
stated above, where a square with a zero is the desired
value.

The backtracking algorithm used for the CSP at-
tempts to find all of the possible solutions to satisfy
the constraints. Variables are assigned values, with
variables being assigned first if they are more con-
strained. Each variable is tested with a 0 first, then
a 1. Each assignment is checked for consistency, if
one assignment is inconsistent, the other is tested, if
assignment doesn’t work, then backtracking occurs.
When all variables are assigned, a solution is found
and the algorithm backtracks to find the next solution.

IV. RESULTS AND ANALYSIS

We use three metrics to understand how well our
approaches perform in playing Minesweeper: the test-
ing accuracy, which is how well the classifier predicts
individual board states, the average percentage of the
board uncovered, and the average number of game
wins. We plot these three different metrics because
win rate alone can be misleading: predictors with a
low win rate may still achieve reasonable training
and testing accuracy. This is because the machine
learning and Q-learning algorithms must make many
consecutive correct predictions in order to win; one
can imagine a scenario where such an algorithm is
able to clear a large percentage of the board before
making an incorrect move. In this situation, the av-
erage percentage of the board uncovered might be a
more revealing statistic than win rate alone.

First, we observe the relative performance of the
four approaches. The classification, linear regression,
and Q-learning algorithms all exhibit moderate suc-
cess on 4x4 boards; the Q-learning approach achieves
roughly a 70% win rate, the greatest of the three.
However, the performance of these three algorithms
drops immediately as board size increases. Notably,
each has a winning rate of <10% on a 5x5 game
board, and <5% on a 6x6 board. The CSP, however,
enjoys significantly greater success, with a win rate
of approximately 80% on an 8x8 board. Furthermore,
its win rate decreases very little as the board size
increases, seeing a win rate of slightly less than 70%
on a 32x32 board.

Second, we would like to highlight the decrease
in win rate as mine density increases. This effect



6

applies to all the algorithms − a game with more
densely placed mines is simply harder to win because
a game with more mines has far more possible lay-
outs. Consider an nxn board with p mines, where
p ≤ n2. On this board, the number of distinct board
configurations is equal to n2!

p!(n−p)! Excluding rotations
and symmetric configurations, this value drops to

n2!
8p!(n2−p)! . One can see that the number of possible
mine configurations is maximal when p = n2/2; not
surprisingly, this number increases as p approaches
n/2. A greater number of possible mine configurations
causes a more challenging game simply because there
is less certainty. It results in a larger state space, and
there are fewer guaranteed safe moves.

While the Q-learning model shows promise, it suf-
fers from a hugely large state space. To approximate
its magnitude, on a minesweeper board, we see that
each tile can hold one of ten values: unknown (i.e.
covered), 0 (i.e. empty), or 1-9. Thus we see that
10mn is an upper bound on the number of board
configurations. While this number is significantly
greater than the true number of configurations (due
largely to inconsistent configurations), the number still
illustrates that the state space explodes as board size
increases. The issue of increasing magnitude of state
space is compounded by the fact that in order to
be accurate, the Q-learning algorithm must visit each
state many times. To see why, we recognize that the
algorithm aims to compile a probability distribution
of whether each tile on the frontier is or isn’t a mine.
Given the same board state (what is visible to the
player), however, a tile may be a mine under one
mine configuration, but be safe under another; in other
words, different mine distributions can produce the
same board state. Therefore the algorithm must visit
each board state under a random sampling of mine
configurations in order to accurately approximate the
probability of whether each tile is safe. This is why
the algorithm struggles so mightily with increasing
board sizes; it must play significantly many more
training games to achieve the same exploration rate
of each state. As an example, when moving from a
4x4 to a 5x5 board, the state space can be said to
increase by a factor of 1025

1016
= 109. According to

this naive calculation, the algorithm must train for
one billion times longer In order to achieve the same
exploration level of each state. Again, the true value is
smaller, although it still grows at an alarming rate. The
enormously large, and rapidly increasing, state space
of minesweeper explains the performance of the Q-
learning algorithm. It requires far more training itera-

tions than classification and linear regression because
it needs to thoroughly explore the entire state space–it
cannot generalize to unseen states. And its win rate
drops quickly as board size increases because the
state space simply explodes, and it cannot thoroughly
explore larger boards in any reasonable amount of
time.

The most significant observation about the classifier
model is that it is highly prone to be biased when
the feature extractor operates on a relatively small
amount of the board. We vary the number of local
features used in training to illustrate how the number
of features affects bias in the classifier as well as the
win rate of the algorithm.

8 24 48
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Features

R
at

e

Number of features vs. win rate and training accuracy

Logreg- Test Accuracy
Logreg- Win Rate

SVM- Test Accuracy
SVM- Win Rate

The regression model suffers from high variance
and choosing the correct parameters for regularization
is essential for good learning. We illustrate how test
accuracy (the accuracy on individual states) as well as
win rate increase with the size of training the training
set, correlating less variance with higher win rate.

100 400 800 1,500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Iterations

Ra
te

Regression- Iterations vs. Success Rates (4x4 Board, 3 Mines)

Train Accuracy
Test Accuracy

Win Rate

Supervised learning methods each have benefits and
drawbacks. The classifier model has potential to scale
to larger size boards, since the feature vector is not
dependent on the board size, and the prediction is
made solely on the local board state. Yet this approach
currently underperforms compared to our other two
machine learning approaches. On the other hand,



7

because we use an exponential time Minesweeper
solver to train the regression model, we cannot train
our algorithm on large boards. Therefore, we optimize
learning on smaller boards where learning the proba-
bilities for every square is feasible.

102 103 104 105 106
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Training iterations

W
in

ra
te

Number of training iterations on a 4x4 board with three mines vs. Win rate

Classification
Regression
QLearning

4x4 (3 mines) 5x5 (5 mines) 6x6 (7 mines)
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Board Size

W
in

ra
te

Board size vs. Win rate

Classification
Regression
QLearning

2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of mines

W
in

ra
te

Number of mines on 4x4 board vs. win rate

Classification
Regression
QLearning

The
CSP approach was the most successful at correctly
solving larger boards. This is due to the fact that it
does not have to enumerate every possible state in
order to obtain good results. The way that the problem
is posed allows the CSP to make as few guesses as
possible and most of the moves that it makes are done
with full certainty of correctness. The guesses that the
CSP solver does have to make come from the situation
where it is forced to make a “crap shoot” guess; this
is unavoidable and no optimizations could help the

solver. The other type of guesses comes when there
is not enough information on the board to be able to
solve systems of constraints.

10 15 20 25 30 35 40 45 50 55 60 65 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

W
in

ra
te

CSP: Number of mines on 16x16 board vs. win rate

Win rate
Avg. % of board cleared

Our results show that increasing mine density
quickly drops the rate of success for the CSP solver,
similar to the other solvers. Because there are more
mines on the board, the likelihood of incorrectly
guessing for mines greatly increases and there are
also fewer non-mine squares to get information from.
However, while the mine density greatly affects the
CSP, the board size does not seem to affect it as much.
The solver was tested using the same mine density (10
mines for an 8x8 board) on larger board sizes and,
while the win rate did drop, it was by less than 15%.

While the CSP is more accurate than the other
solvers for playing games on large boards, it is much
slower. The other methods use most of the time in
doing pre-computations and learning, but once that is
done and saved, they can play many more thousands
of games than the CSP, even when the CSP required
no pre-computation. This is mostly due to the slow
backtracking algorithm, which could be optimized to
be faster.

8x8 12x12 16x16 20x20 24x24 28x28 32x32
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

W
in

ra
te

CSP: Board size vs. win rate at constant mine density

Win rate
Avg. % of board cleared

V. FURTHER RESEARCH/WORK

Moving forward, there are several additional ap-
proaches to explore related to our current research.



8

The first is in improving the success rate of our
CSP approach. While the CSP excels at determining
which tiles are guaranteed to be safe and which tiles
are guaranteed to be mines, it does not have an
effective mechanism for making guesses in cases with-
out complete certainty. Since our other approaches
attempt to approximate mine probability, we believe
that integrating them with the CSP will lead to a
greater success rate. For instance, we propose training
our Q-learning algorithm on a smaller board (say,
4x4 or 5x5) and applying it to certain regions of a
larger board. Similarly, we also would like to utilize
the classification algorithm’s probability estimates to
better inform the CSP’s guesses, since this approach
is inherently scalable. The resulting insight into which
squares are least likely to be mines will help the
CSP make more educated decisions. As stated in the
above section, another area where the CSP could be
improved is in performance; the CSP backtracking
algorithm is slow and could be optimized to be faster.

In addition to improving the CSP’s guess accuracy,
we also believe that the approach of deep Q-learning
holds promise. A key feature of Minesweeper is that
the same method for solving one board state can di-
rectly be applied to another board state, which makes
function approximation in Q-learning especially ideal.
Specifically, given the strong local dependencies of
making decisions while playing the game, we think
using a Convolutional Neural Network (CNN), similar
to [4], is a promising area of exploration because
learning local strategies can be generalized to the
entire board, greatly helping to learn the expansive
state space for larger boards.

REFERENCES

[1] Kaye, R. (2000). Minesweeper is NP-complete. The Mathematical
Intelligencer, 22, 9-15.

[2] Adamatzky, A. (1997). How Cellular Automation Plays
Minesweeper. Applied Mathematics and Computation, 85,
127-137.

[3] Maznikova, M. A. Minesweeper Solver.
[4] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I.,

Wierstra, D., & Riedmiller, M. (2013). Playing Atari with Deep
Reinforcement Learning. CoRR.

[5] Nakov, P., & Wei, Z. (2003). MINESWEEPER,
#MINESWEEPER.

[6] Welling, M. Kernel Ridge Regression University of California,
class notes.

[7] Yang, X., Song, Q., Wang, Y. (2007). A Weighted Support Vector
Machine for Data Classification. International Journal of Pattern
Recognition and Artificial Intelligence, 21(05), 961-976.

[8] Studholme, C. (2000). Minesweeper as a Constraint Satisfaction
Problem. Unpublished project report.


